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We consider the spin-up of a two-layer, stably (density) stratified fluid in a rotating
container with an axisymmetric sloping base and cylindrical walls. Details of the spin-
up readjustment mechanisms are presented under the assumption of small impulsive
changes in the rotation rate of the container. It is shown that the relative positions
of the density interface and the discontinuity in wall slope determine the qualitative
large-time spin-up response of the fluid. The density interface leads to a spin-up
readjustment in each of the fluid layers that is essentially independent. However,
when the density interface is below the boundary-slope discontinuity, a sub-region
of the upper layer is predicted to readjust in an algebraic rather than exponential
manner. A detailed sequence of laboratory experiments have been performed to
confirm the predictions of the linear spin-up analysis.

1. Introduction
The processes of spin-up and spin-down in rotating fluid bodies have an established

relevance to large-scale geo- and astrophysical flows (see, for example, the review by
Benton & Clark 1974) and a wider applicability to a number of industrial problems
such as centrifugal separation and projectile stability (O’Donnell & Linden 1991).
The term spin-up (-down) usually refers to the transient response of a rotating fluid
body to an instantaneous increase (decrease) in the rotation rate of the container,
though there are other geophysically interesting flow configurations where the spin-up
(-down) mechanism also operates. For example, in the case studied by Spence, Foster
& Davies 1992, a fluid body readjusts via a spin-up mechanism when the uniform
rigid body rotation is perturbed by the sudden imposition of a constant surface stress
(see also Pedlosky 1971).

For homogeneous fluids, the time taken for the system to adjust fully (that is,
spin-up/down) to a new rotation rate, Ω ± ∆Ω, from an initial rate, Ω, is known to

be E ′−1/2
Ω−1 (Greenspan & Howard 1963); here E ′ is the Ekman number of the flow

defined by E ′ = ν/ΩH2 while ν and H are the kinematic viscosity and total depth of
the fluid respectively. In this formulation, the result concerning the spin-up time scale
is valid for ∆Ω/Ω � 1, though experiments and theoretical analyses by Weidman
(1976a, b) have also investigated the effects of nonlinear (∆Ω/Ω = O(1)) spin-up. In
all cases, the mechanism involved is stretching (compression) of the vortex lines of the
rigid rotation by pumping of fluid into (or out of) the Ekman boundary layers on the
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horizontal surfaces of the container (Greenspan & Howard 1963; Wedemeyer 1964;
Greenspan & Weinbaum 1965). Diffusive effects have no real part in this adjustment
process.†

If the rotating fluid under consideration is also stably density stratified, the transient
adjustment is very much slower, occurring in two stages (see Pedlosky 1967; Walin
1969; Sakurai 1969; Beardsley et al. 1979; Buzyna & Veronis 1971). There is an initial

adjustment (occurring on the same E ′−1/2 time scale as the homogeneous spin-up)
to a quasi-steady state in which the interior horizontal velocity has a linear vertical
shear. However, the final adjustment to a new, steady, equilibrium state occurs much
more slowly over the diffusive time scale E ′−1 (see also Spence et al. 1992). Laboratory
experiments by Buzyna & Veronis (1971) have confirmed many of the features of
these analytical predictions.

For two-layer immiscible stratified fluids with upper and lower layers of depth Hu

and Hl respectively, spin-up is achieved separately on E ′u,l
−1/2 time scales appropriate

to the individual layers (with Eu,l defined using Hu,l as the appropriate length scale and
kinematic viscosities of νu, νl). If either or both of the ratios of depths and viscosities
differ significantly from unity, the consequent differences in spin-up times between
the upper and lower layers results in a dome-like deformation of the interface during
the adjustment process (see, for example, Kim & Hyun 1994).

In the present study we investigate the transient response of a two-layer rotating
fluid to a change in the background rotation rate of the container, for a case in
which the two homogeneous layers are separated by a thin, high-N region (where N
is the Brunt–Väisälä frequency, which we define in detail later). Attention is focused
on containers for which the fluid depth varies linearly with radius. We search in
particular for the effects of the sloping bottom boundary in the transient response
of the fluid. The response mechanism for cases in which the interface intersects the
sloping base is compared with those in which the interface is either remote from the
lower boundary or below the slope discontinuity (see figure 1 below). Laboratory
experiments are described in which velocity-field data and density changes have been
measured over a range of parameter values.

Compared with the cases discussed above, much less is known about transient
adjustments of rotating homogeneous and stratified fluid systems in variable-depth
containers of the type investigated here. Before turning to these cases, we note that
even steady-state motions in such geometries are not fully examined in the literature.
Hide & Hocking (1979) and Page (1982) showed that a homogeneous, steady flow
in a container with a planar bottom cutting obliquely across the cylinder forms
a boundary current, a sidewall shear layer whose structure is quite different from
counterpart layers in constant-depth containers (see Stewartson 1966, for example).
Van Heijst, Maas & Williams (1994) have considered the rather complex case of spin-
up in a non-axisymmetric container (a rectangular channel) having a sloping base, and
have demonstrated clearly that the fluid in the shallow part of the tank spins up much
more quickly than the deeper fluid. For fluids that are stratified with a solute (e.g. salt
in water), Phillips (1970) and Wunsch (1970) have found that the slope itself drives
a weak diffusive current along it with no other boundary forcing, although in a salt-
stratified medium the associated slope-velocity Reynolds number is expected (Phillips
1970) to be very small (10−3). In a closed container, this slope current eventually decays
to rest, with a very narrow layer adjacent to the lower wall being well-mixed as a result.

† Since the spin-up and spin-down processes are identical for the linear case, a distinction between
the two is no longer made in this paper.
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Figure 1. The interior flow regions described by the linear spin-up analysis. The non-dimensional
extent of each region is as denoted, with the cylinder wall at r = 1. Note that the container utilized
in the laboratory experiments is such that rB � 1. z is measured relative to the location defined by
N = Nmax, as defined in the text. The quantity zc is the relative vertical location of the cone/cylinder
interface to the mid-level of the density interface.

The recent work of Duck, Foster & Hewitt (1997); Hewitt et al. (1999a) and Hewitt,
Duck & Foster (1999b) has considered the nonlinear spin-up (and spin-down) of a
fluid that is linearly stratified with a dissolved solute in container geometries with
sloping boundaries. The work extended the previous linear analyses of MacCready
& Rhines (1991) and Thorpe (1987) by considering the nature of the boundary layer
when the changes in rotation are of the same order as the initial/final rotation rate.
A combination of computational approaches, asymptotic analysis and laboratory
experiments has shown that the presence of both rotation and buoyancy effects can
lead to a rich variety of boundary-layer behaviours for nonlinear spin-up/down.

Thus, in this paper we shall consider the global linear spin-up of a two-layer fluid in
a variable-depth container, in which two homogeneous regions of fluid are separated
by a thin, high-N layer, rather than two immiscible fluid layers. In § 2, we provide
the theoretical formulation and present some analytical results. Section 2.1 discusses
the spin-up mechanism in a circular cylinder for a two-layer fluid and this analysis
is extended in § 2.2, § 2.3 and § 2.4 for the case of a circular cylinder with a conical
base. In § 3, the theoretical predictions are summarized and § 4 provides the details
of a corresponding laboratory investigation of the spin-up readjustment. The results
of the experimental work and comparisons to the theoretical predictions are given in
§ 5. A brief qualitative description of the first observable nonlinear effects is given in
§ 5.3, and conclusions are given in § 6.

2. Formulation and theoretical results
Figure 1 shows the configuration under consideration. A cylindrical container of

radius R, with a conical lower surface, is rotating initially with uniform angular
velocity Ω about the vertical z-axis. The container is filled with two miscible fluids of
upper and lower layer densities ρo and ρo + ∆ρ and depths Hu and Hl respectively,
in hydrostatic equilibrium and solid body rotation. The layers are separated by
an interfacial layer of thickness Rδ, within which the density ρ(z) varies smoothly
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and monotonically with depth z and in which the local buoyancy frequency N(z)
has a maximum value Nmax midway between the upper and lower ‘surfaces’ of
the interfacial layer. Here, N(z) is defined by N2 = −(g/ρo)∂ρ/∂z, where g is the
gravitational acceleration. Attention is restricted to cases in which the difference in
kinematic viscosity between the two constituent fluids is negligible. The upper surface
of the system is free and the lower boundary consists of a conical solid surface of
base angle α, cut by a horizontal plate of radius RrB . Throughout the analysis, we
use a circular polar coordinate system (r, θ, z), with velocity components (u, v, w) in
those directions. For later convenience, we fix the coordinate system so that z = 0 in
the centre of the density interface, that is, where N is a maximum.

At time t = 0 the rotation rate of the system is changed by ∆Ω and the system
responds to this change in a manner that is conveniently described in terms of the
individual values of the following set of dimensionless dynamical parameters:

Ro =
∆Ω

Ω
, a Rossby number, (2.1)

Bu =
N2
max

Ω2
, a Burger number, (2.2)

E =
ν

ΩR2
, an Ekman number, (2.3)

and the geometrical ratios rB , δ (described below), h+ = Hu/R, h− = Hl/R, and the
angle α.

Since the motion is driven by a differential rotation, all dynamical dependent
variables will scale with ∆Ω. We therefore write the physical dependent variables,
marked with a (∗), as

u∗ = ∆ΩRu, (2.4)

p∗ = ρRΩ∆ΩR2p+ p∗o(z), (2.5)

ρ∗ = ρR + ρo(z) +
ρRΩ∆ΩR

g
ρ, (2.6)

N2 = −gρ
′
o(z)

ρR
, (2.7)

where the quantity p∗0(z) is the hydrostatic pressure corresponding to the density
distribution ρo(z) and R is the container’s maximum radius. In the following formu-
lation, we scale spatial variables with R, so (r∗, z∗) = (Rr, Rz), and we suppose that
the Rossby number Ro is small. In the experiments the Brunt frequency is sharply
peaked near the initial undisturbed interface; we model this by writing

N2 = Ω2 S

δ2
exp(−(z/δ)2), where E1/2 � δ � E1/4, (2.8)

and the Burger number S employed in the analysis is related to the usual Burger
number Bu above by S = Buδ2; it is taken to be O(1). The origin of the restrictions
on δ are discussed in detail in § 2.4.

The continuity, Boussinesq-approximated Navier–Stokes and density transport
equations become (in a rotating frame)

∇ · u = 0, (2.9)

E1/2 ∂u

∂t
+ 2k∧u+ ∇p = E∇2u− ρk, (2.10)
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E1/2 ∂ρ

∂t
− S

δ2
exp(−(z/δ)2)w =

E

σ
∇2ρ, (2.11)

where the nonlinear terms have been omitted. The Ekman number E is most con-
veniently based on the radius R of the apparatus; σ is the Schmidt number and we
have taken the time scale to be that appropriate to the spin-up of a homogeneous
fluid unless otherwise noted, so t∗ = R/(νΩ)1/2t. We wish to construct an asymptotic
solution to these equations with appropriate boundary conditions, namely

u = k∧r ≡ uB at all solid boundaries, (2.12)

∂ρ

∂n
= 0 at all solid boundaries, (2.13)

stress continuity at z = h+. (2.14)

Initial conditions require that the velocity field be zero at t = 0. (Note that from (2.8)
we have taken the vertical coordinate, z, to have its origin at the level of the peak
value of N.)

Because the initial z-dependent density gradient cannot satisfy the stated condition
on ρ in the δ-region of the sloping walls, there will be thin, unsteady, diffusive layers
on those walls. However, these layers have thickness RE1/2(δ/Sσ)1/4, developing over
a time scale (σδ/S )1/2/Ω and so have little bearing on this analysis so long as
the Schmidt number, σ, is large and δ is restricted as indicated in equation (2.8).
In typical laboratory experiments involving saline solutions, the relevant Schmidt
number is σ ∼ 103.

It is well known that on horizontal boundaries equations (2.9)–(2.11) admit Ekman
layers whose structure leads to a compatibility condition at the boundary which may
be applied to geostrophic solutions in lieu of repeated boundary-layer analysis. This
compatibility condition in our notation is

w = −E
1/2

2

1

r

∂

∂r
[r(v − vB)], at z = −h−, (2.15)

where the B subscript denotes velocities at the boundary. This same condition must
be applied on the sloped portion of the lower wall, where it takes the form

w = u tan α+
E1/2

2
√

cos α

1

r

∂

∂r
[r(v − vB)]. (2.16)

This formula has been specialized for axisymmetry, which we shall assume throughout
this discussion. In the subsequent analysis, we take vB = r for rigid rotation.

The nature of the flow in the (thin) interfacial layer, centred at z = 0 and having
width δ is a question of considerable complexity, and its discussion is deferred until
§ 2.4. For the moment, we anticipate the crucial piece of information from that
analysis, namely that, insofar as the outer flow is concerned, the layer at z = 0 acts
as a non-penetrable barrier to the flow above and below it. Based on analysis for
situations with two immiscible fluids, one might expect Ekman layers on either side
of the interface, but they do not occur here; a further discussion of this point is given
in § 2.4.

Hence, we obtain

w = 0 at z = 0, (2.17)

to leading order in E. Thus, the stratification is so large in this thin δ-zone that
vertical motion is inhibited, thereby isolating Region I from Region II (see figure 1)
in all that follows.
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2.1. Spin-up in a cylindrical container

Before examining the spin-up in a cylinder–cone container, we turn first to a simpler
problem that is instructive: spin-up in a cylindrical container. Referring to figure 1,
we note that the upper (free) and lower horizontal surfaces of the container are given
by z = h+ and z = −h− respectively. From (2.17) above, we require that w must
vanish at z = 0 at least to order E1/2. Since there can be no Ekman layer beneath
the upper (free) boundary, the usual homogeneous-fluid spin-up mechanism involving
Ekman pumping cannot be active in the upper layer, Region I. In the lower layer
(Region II) the asymptotic expansion proceeds in powers of E1/2. The leading-order
velocity is in the swirl direction only and geostrophic, so that v0 = v0(r, t) only. To
next order, since there is no baroclinic density variation in Region II,

−2v0 +
∂p0

∂r
= 0, (2.18)

∂p0

∂z
= 0, (2.19)

∂v0

∂t
+ 2u1 = 0, (2.20)

1

r

∂ru1

∂r
+
∂w1

∂z
= 0. (2.21)

Utilizing the Ekman suction condition (2.15) to determine the rate of change of w1

with z leads to a partial differential equation for the vorticity in the flow beneath the
interfacial layer,

∂Z

∂t
+

1

h−
(Z − ZB) = 0, Z ≡ 1

r

∂rv0

∂r
, (2.22)

whose solution for the velocity is the familiar homogeneous spin-up solution given
first by Greenspan & Howard (1963),

v0 = vB(1− e−t/h−). (2.23)

For the flow in Region I (the upper layer), since there is no Ekman pumping the
usual spin-up time scale is not relevant. The only relevant scale is the viscous diffusion
time, a2/ν, and so the leading-order term in the E1/2 expansion in Region I gives the
partial differential equation

∂2v0

∂r2
+
∂v0

∂r
− v0

r2
=
∂v0

∂t′
, (2.24)

where t′ = tE1/2. The solution is therefore

v0 = vB

[
1−

∞∑
n=1

anJ1(jnr) exp(−j2
n t
′)

]
, (2.25)

an =

{∫ 1

0

rJ1(jnr) dr

}{∫ 1

0

rJ2
1 (jnr) dr

}−1

, (2.26)

where jn is the nth zero of J1(x).

2.2. Spin-up in the cone/cylinder for zc < 0: interface intersects the vertical wall

We now return to a cylindrical container with a conical base and consider the case in
which the density interface is above the conical surface. This configuration is denoted
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by zc < 0 (see figure 1). The fluid above the interface (Region I) is wholly bounded
by vertical sidewalls. Hence, the upper level of the fluid has a velocity v0 that is given
once again by equation (2.25); therefore, on the time scale under examination here,
no spin-up has occurred except sufficiently close to the wall. It is the region below
the interface that differs from the case considered in § 2.1, since now the lower layer
has a boundary that has a conical portion. In Region IIa, where r < rB , the solution
is given by equation (2.23).

In Region IIb, the flow is somewhat more complicated due to the fact that the
lower wall is not horizontal. Equations (2.18)–(2.21), when utilized to eliminate u1,
lead to

∂

∂t

(
1

r

∂rv0

∂r

)
= 2

∂w1

∂z
. (2.27)

The Ekman condition (2.16) determines w1 and use of (2.20) leads to an equation
whose first integral is the equation satisfied by v0 in Region IIb,

(h− − (r − rB) tan α)
∂v0

∂t
+ (v0 − vB)(cos α)−1/2 =

K(t)

r
. (2.28)

The quantity 2πK(t) is the circulation of an irrotational vortex and its evaluation
is non-trivial. Even were its value known, simultaneous solution of equations (2.22)
and (2.28) is also problematic. For example, demanding continuity of v0 at r = rB ,
a straightforward assumption, leads to a problem since volumetric flow rates in the
horizontal- and conical-boundary Ekman layers are given respectively by

Fr = − 1
2
E1/2(v − vB), (2.29)

Fslope = − 1
2
E1/2(v − vB)(cos α)−1/2, (2.30)

so that the flow rate is not continuous at rB , where the layers meet. Hence there must
be a source/sink of fluid at rB . The treatment of such a region is well established.
(See, for example, Moore & Saffman 1969b.) Nonetheless, the details are complicated,
involving the Stewartson layers that straddle r = rB . The analysis is presented in
Appendix A, where we evaluate K(t), and determine that the Laplace transform of
the geostrophic velocity at r = rB+ is given by

L{v0b} =
rB

s
− rB

p2

1 + pqh−
(cos α)−1/2 + pqh−

, (2.31)

where

p ≡ (s+ h−1
− )1/2, q ≡ (s+ (h−(cos α)1/2)−1)1/2. (2.32)

Substitution of this result into the Laplace transform of (2.28) evaluated at r = rB
determines the transform of K(t) to be

L{K(t)}r−1
B =L{v0b}q2h− − rB(s

√
cos α)−1, (2.33)

from which we obtain the transformed version of (2.28),

(sH− + (cos α)−1/2)L{v0} =
rBq

2h−
r
L{v0b}+

r2 − r2
B

rs(cos α)1/2
, (2.34)

with H−(r) ≡ h− − (r − rB) tan α. We note here that H−(r) is clearly the depth of the
fluid column at the radial location r. For brevity of notation we will use H− in the
formulae that follow, rather than showing the radial dependence explicitly.

Substitution of (2.31) into this expression and inversion of the Laplace transform
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leads to

v0(r, t) = r(1− exp(−µt/H−)) +
ĥr2
B

r
V0(r, t) (2.35)

with

V0(r, t) = exp(−µt/H−)− µ− 1

µC
exp(−t/h−)− D

C

µ1/2 − µ(CD)1/2

µ1/2 − (CD)1/2
exp(−µt/H−)

+2(µ− 1)
3µ2 − 2µ+ 1− (µ− 1)Q

µQ(2µĥ− µ− 1− Q)
exp(−(µ+ 1 + Q)t/(2h−)) + I(t),

(2.36)

where µ ≡ (cos α)−1/2, ĥ ≡ h−/H−, C ≡ µĥ− 1, D ≡ ĥ− 1, and Q ≡ (5µ2 − 2µ+ 1)1/2.
In this expression, the function I(t) comes from an integral around branch cuts in the
s-plane, and is given by

I(t) ≡ µ− 1

π

∫ µ

1

(µ− φ)3/2

(φ− 1)1/2

H−
h−

(µ2 + (µ− φ)(φ− 1))−1 exp(−φt/h−) dφ. (2.37)

As we shall see in detail in § 2.4, there is no Ekman layer beneath the interface at
z = 0. As noted already, neither is there an Ekman layer on the underside of the
free surface. Hence, if we let h+ → 0, then the results in this section also describe
spin-up of a homogeneous fluid in a container of this shape. Furthermore, in the
limit of rB → 0, the results of this section are in agreement with those presented by
Greenspan & Howard (1963).

2.3. Spin-up in the cone/cylinder for zc > 0: interface intersects the slope

Figure 1 indicates the geometrical configuration in this situation. There are now four
distinct regions: Ia,b and IIa,b. We deal with Regions I and II in detail below.

Region II: z < 0. The analysis of the preceding section remains largely unchanged
for the region z < 0 since there are unsteady E1/4 layers straddling r = rB as before.
Thus, (2.23) describes the time history in Region IIa, where r < rB , and solution (2.35)
remains valid in Region IIb. However, the motion in Region I is somewhat different
as will be discussed below.

Region I: z > 0. There are no Ekman layers bounding Region Ia, and so the
evolution is described by equation (2.25), as in the case explored in the preceding
section. Therefore, on this time scale,

v0 = 0 in Region Ia: z > 0, r < a, (2.38)

where a is the radial location where the interface intersects the sloping boundary. In
Region Ib, the equation of motion is virtually identical to (2.28) except in z > 0; it is

(h+ − (r − a) tan α)
∂v0

∂t
+ (v0 − vB)(cos α)−1/2 =

K(t)

r
, (2.39)

where the circulation 2πK(t) must once again be determined by considering the
shear-layer structure at r = a. Evaluation of (2.39) at r = a determines K in terms of
L{v0b}, namely

(sh+ + (cos α)−1/2)L{v0b} − a s−1(cos α)−1/2 =L{K}a−1. (2.40)
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Substitution for K into (2.39) gives the transform in terms of L{v0b},

(sH+ + (cos α)−1/2)L{v0} = s−1(cos α)−1/2

(
r − a2

r

)
+
a

r
h+(q′)2L{v0b}, (2.41)

where

H+ ≡ h+ − (r − a) tan α. (2.42)

The transform L{v0b} is discussed in detail in Appendix A, and is indeed compli-
cated. The reason is that the shear layer in r = a− has a width that grows in time,
so, in fact, rather than as stated in (2.38), the swirl speed in Region Ia is small, in E,
but not zero. It turns out that even small values of v0a makes a difference in the form
of L{v0b}. Again, the details can be found Appendix A. The small-E approximations
lead to formula (A 20) for L{v0b}, which may then be inverted in the usual way,
leading to

v0(r, t) = r(1− exp(−µt/H+)) +
a2

r
Ṽ0(r, t), (2.43)

and that portion of Ṽ0 on the spin-up time scale is given by

Ṽ
(1)
0 (r, t) = exp(−µt/H+)− (1− h̄){1− [h̄(h̄− 1)]1/2}−1

× exp(−µt/H+)− 2µ(µ−Ψ )

(µ−Ψ/h̄)√5Ψ
exp(−Ψt/h+)− J(t), (2.44)

where Ψ = (1 +
√

5)µ/2, h̄ = h+/H+ and µ = (cos α)−1/2 as before. The part of the
transient due to an integral around branch points is given by

J(t) ≡ 1

π

∫ 1

0

(
(1− φ)3

φ

)1/2

((1 + φ− φ2)(1− φ/h̄))−1 exp(−µφt/h+) dφ. (2.45)

However, this inversion does not capture the longer-time motion, again as discussed
in Appendix A. In fact, with a small-E approximation, other than those made to
derive the 1/4- and 1/3-layer structures in the first place, we find that there is an
origin pole in L{v0b}, leading to an additional contribution to Ṽ0. Solution (2.43) is
therefore completed by including (2.44) and

Ṽ0(r, t) = Ṽ
(1)
0 (r, t) + Ṽ

(2)
0 (r, t), (2.46)

where

Ṽ
(2)
0 (r, t) = −

√
µ

h+

E1/4

a
. (2.47)

2.4. The time-dependent motion in the interfacial layer

The general equations of motion for the interior of the fluid, away from horizontal
and vertical viscous layers involve a shorter intrinsic time scale, namely the time
scale of internal/inertial waves. To explore that, we introduce that short time scale as
t̄ = tE−1/2. Away from any high-gradient regions where viscous terms or diffusivity
are important, equations (2.9)–(2.11) are easily reduced to a single equation for the
vertical velocity,

∂2

∂t̄2
∇2w + 4

∂2w

∂z2
+
S

δ2
exp(−z2/δ2)

1

r

∂

∂r

(
r
∂w

∂r

)
= 0, (2.48)
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and the swirl velocity is related to w by

∂

∂t̄

(
1

r

∂rv

∂r

)
= 2

∂w

∂z
. (2.49)

Letting δ → 0 in these equations, with z not small leads to equations that govern
the propagation of inertial waves, which are associated with the initial stages of the
spin-up in a way described by Greenspan & Howard (1963). That wave propagation
is of only second-order importance to the spin-up process, and is not further discussed
here.

However, within the interfacial layer, the motion is much more complex. Putting
z = δζ, the first term of an asymptotic expansion in δ for the velocity and density in
that region gives, from (2.48), the equations for internal-gravity/internal waves,(

∂2

∂t̄2
+ 4

)
∂2w

∂ζ2
+ S exp(−ζ2)

1

r

(
r
∂w

∂r

)
= 0, (2.50)

δ
∂

∂t̄

(
1

r

∂rv

∂r

)
= 2

∂w

∂ζ
. (2.51)

This interfacial layer is thicker than the Ekman-layer thickness provided that

δ � E1/2, (2.52)

a restriction already noted in (2.8). This restriction means that viscous diffusion is
absent from the equations describing the motion in this δ-layer. Since solutions of
(2.50) are continuous, there is no need for a thinner Ekman layer for smoothing
of the flow quantities. Should δ = O(E1/2), however, the dynamics of this layer
must include the effects of viscous diffusion, leading to a much more complicated
description than that provided by (2.50). For values of δ much smaller than E1/2, there
are indeed Ekman layers that sandwich a much thinner δ-layer. In the experiments
to be described in § 4, the Ekman number is E ≈ 4.78× 10−5, for which the E1/2-scale
is smaller than the width of the transition zone, for which δ ≈ 0.075.

For the theoretical model presented here, we are assuming that deflection of the
free surface and transition zone during the readjustment phase has a negligible effect
at leading order over the E−1/2Ω−1 timescale. Comments regarding the applicability
of this assumption to the experimental component of this work are made in § 4.

Vertical-velocity boundary condition for the outer flow

Note that, from (2.51), the vertical velocity in this region is O(δ), and on the spin-up
time scale of § 2.4.2, it is even smaller –O(δE1/2). Therefore, to match to the regions
away from this layer, on a spin-up time scale w = o(E1/2), and hence this region
acts as a solid boundary to the geostrophic flow above and below, requiring that
the O(E1/2) vertical velocity component vanish at z = 0, leading to the boundary
condition already utilized as (2.17).

2.4.1. Motion for short times

Since it turns out that where this layer intercepts a sloping or vertical wall, the
radial velocity component, u, must be zero (see below), we introduce the following
representation for w:

w =

∞∑
n=1

An(ζ, t̄ )J0

(
jnr

a

)
, (2.53)
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where jn is the nth zero of the Bessel function J1, and hence satisfies the bound-
ary condition on u. Substitution of (2.53) into (2.50)–(2.51), followed by a Laplace
transform in time, leads to

∂2

∂ζ2
L{An} =

S exp (−ζ2)j2
n

a2(̄s2 + 4)
L{An}, (2.54)

where the overbar on L indicates a Laplace transform variable s̄, related to the
(short) time variable, t̄.

Considerable analysis has been done regarding the nature of the solution to (2.54).
We have not included the details here, since they have little effect on the global
spin-up problem, but we give a brief summary below.

Matching of solutions to (2.54), to either Region Ia or Ib above, and to either
Region IIa or IIb below, introduces various Laplace-domain singularities, in addition
to those inherent in the solutions to (2.54) itself. Without giving the details, we
note that there are a number of poles of L{An} a distance E1/2 from the origin,
obviously related to behaviour on the spin-up time scale. There are also two sets
of branch points on the same scale, leading to features that decay algebraically in
time. More important to the short-time behaviour, there are branch points of L{An}
that are located at s̄ = ±2i. These branch points contribute inertial oscillations with
algebraically decaying amplitudes.

2.4.2. Motion on the spin-up time scale

On the spin-up time scale, we may neglect the time derivatives in (2.50), in which
case the equation takes the form

∂

∂r

(
1

r

∂rv0

∂r

)
+
S

4

∂

∂ζ

(
exp(ζ2)

∂v0

∂ζ

)
= 0. (2.55)

(It is more convenient to work directly with the swirl velocity here.) In spite of
the apparent time-invariance on this scale, matching conditions at large |ζ| contain
unsteadiness on the spin-up time scale, as reflected in the presence of the s̄s = O(E1/2)
poles noted in the previous section.

In particular, for the case of spin-up in a cylinder, as discussed in § 2.2, the matching
conditions on v0 are given by (2.23) and (2.25), and are

v0 → 0 for ζ →∞, (2.56)

v0 → r(1− exp(−t/h−)) for ζ → −∞. (2.57)

A solution of (2.55) for this case is

v0 = 1
2
r[1− exp(−t/h−)]erfc(ζ), (2.58)

but it is valid only in the central portion of the layer, since it fails to satisfy the
condition u = 0 at the container wall.

For the case zc < 0 (for which the density interface intersects the vertical wall), the
solution is somewhat more complicated, but the large-time behaviour is equivalent to
that found in the cylinder geometry (2.58), and is

v0 → 1
2
rerfc(ζ) as t→∞, (2.59)

which is valid all the way to the wall in this limit.
However, for the case of zc > 0 as discussed at the beginning of this subsection,

even the long-time behaviour is complicated. Nevertheless, the numerical solution to
(2.55) is easy to obtain although we do not present any such results here.
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2.4.3. On the radial-velocity boundary condition

The question of what boundary conditions are to be imposed on the solution
of (2.55) needs to be addressed. Since there is an obvious symmetry condition at
r = 0, the question is about the condition to be applied at the wall, r = rw(= 1 for
zc < 0 and R for zc > 0). Above this layer, the swirl velocity matches to a diffusively
controlled flow in which there is a boundary layer at r = rw− that has width (E1/2t)1/2

on this time scale, and the interior is not spun up. Hence v matches to zero and the
inflow into the layer is slight, so u = 0 at r = rw at large positive ζ. However, in
Region II, for all of the cases studied, there is an O(E1/2) inflow into the sidewall
‘quarter layer’. Thus, for large negative ζ, it appears that u is not zero at r = rw .
Resolution of what condition is to be imposed requires a careful examination of
the E1/4 layer on r = rw−, which is complicated by the exponential behaviour of
N2. Such an examination reveals that the usual Stewartson ‘quarter layer’, with its
concomitant O(E1/2) inflow, persists along the side of this thicker interfacial layer
only for negative ζ values larger than O([− logE]1/2). On the other hand, for O(1)
values of ξ, the large stratification attenuates the vertical motion, so that alongside
the O(1) interfacial layer the radial velocity is O(δE1/4), which is sufficiently small for
u = 0 to be the appropriate condition. The transition between these regions occurs
in a layer of width E1/4, but with a z-thickness of O(δ/(− logE)1/2), at a z-distance
of O(δ(− logE)1/2). Further investigation indicates that the net result is a very weak
singularity that arises near the edge of the interfacial layer, and at r = rw , but its
global effect on the spin-up is minimal, and hence it is appropriate to put u = 0 for
all r = rw .

3. Summary of theoretical predictions
On considering the spin-up of Region II, as given by (2.35), and the different

spin-up mechanisms in Region I for the two cases under study, a few points may be
noted.

When zc < 0, Region I does not spin up at all on the ‘fast’ time scale, so that

v ≡ 0 as t→∞ in Region I, zc < 0. (3.1)

Below the interface, since for (2.37)

I(t) ∼
(
h−
πt

)1/2
(µ− 1)5/2

µ2

exp(−t/h−)

µh−/H− − 1
for t→∞, (3.2)

equation (2.35) indicates that

v0 → r + EST for t→∞ in Region IIb, zc < 0, (3.3)

and, from (2.23),

v0 → r + EST for t→∞ in Region IIa, zc < 0. (3.4)

In these expressions, ‘EST’ stands for exponentially small terms. Hence, all of Region
II is spun up on this time scale, and all of Region I is still rotating at the initial
angular frequency. In this sense there is no qualitative difference between this case
and that of a circular cylinder, as discussed in § 2.1.

Now, we turn to the results for zc > 0. As noted in the preceding section, all of
Region II responds to the forcing in a way that is unchanged from the zc < 0 case, so

v0 → r + EST for t→∞ in Region II, zc > 0. (3.5)
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Figure 2. Experimental apparatus. The structure shown is mounted on a levelled,
computer-controlled turntable with the CCD camera fixed in the rotating frame of reference.

However, examination of the Region Ib solution reveals some unusual features. First,
notice that (2.45) gives

J(t) ∼
√
h+

πµt
for t→∞, (3.6)

and therefore (2.43) indicates that

v0 ∼ r − a2

r

√
µ

h+

E1/4

a
− a2

r

√
h+

πµt
+ EST for t→∞ in Region Ib, zc > 0. (3.7)

So, there is a slow algebraic decay toward a partially spun-up state in this zone. In
Region Ia, no readjustment will be achieved on this time scale

v ≡ 0 for t→∞ in Region Ia, zc > 0. (3.8)

In summary, regardless of the location of the interface (above or intersecting the
slope) the lower layer fully spins up on this time scale, but there is a difference in the
region above the interface: in Region I, any zone of fluid that lies over the sloping
wall and not over the interface does partially spin up, but slowly and algebraically;
however, the central region above the interface remains unaffected by the forcing
since the readjustment mechanism in this region acts over a diffusive time scale.

4. Laboratory experiments
The apparatus

A set of laboratory experiments has been performed to test the conclusions of
the previously detailed linear spin-up analysis. The laboratory apparatus is shown
schematically in figure 2, and a representative set of experimental parameters is given
in table 1.

We utilize a composite geometry, which is constructed from a high-precision acrylic
conical shell acting as the base of a similarly fabricated circular cylinder. Both the
cylinder and the cone are transparent, allowing illumination of tracer particles (for
particle tracking purposes) by a horizontal light sheet of typical depth 6×10−3 m. The
inner radius of the cylindrical shell is 0.1825 m and the lower conical surface is at an
angle π/4 to the horizontal. The lower rim of the cylinder is machined to approximate
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Expt. Ω (rad s−1) Ro E h− = a h+ ∆ρ (kg m−3)

1 π/5 1/6 4.78× 10−5 1.48 0 0
2 7π/30 1/7 5.68× 10−5 1.00 0.50 8
3 π/5 1/4 4.78× 10−5 0.6 0.93 17
4 π/5 1/4 4.78× 10−5 0.275 1.26 13
5 π/5 1/6 4.78× 10−5 1.23 0.33 10
6 π/5 −1/3 4.78× 10−5 0.58 1.0 10

Table 1. A representative sub-set of experimental parameters for which results are presented.

the angle of the conical wall, and the two pieces are joined with a small quantity
of a silicon sealant. This composite container is placed above the axis of rotation of
the turntable and is affixed to a support plate in order to maintain its position. A
larger surrounding structure allows an unseeded quantity of fluid to be introduced
around the lower portions of the container. This minimizes the forces exerted on the
support plate and reduces the optical difficulties of maintaining a horizontal light
sheet through the sloping lower container wall.

In terms of the parameters defined in the previous theoretical work, this configura-
tion corresponds to R = 0.1825 m and rB � 1.

The structure shown in figure 2 is mounted on a levelled turntable, the rotational
speed of which can be controlled accurately through a remote electrical control
system. The rotation changes are initiated by specifying a final rotation rate and a
constant acceleration level in the input to the motor controller. For small changes
in the rotation rate of the turntable, the initial and final angular frequency of the
container are accurate to ±0.002 rad/s−1.

Filling of the cylinder/cone is performed with the container at rest; a volume of
fresh water is introduced into the tank, followed by a prescribed quantity of a salt
solution. The more dense lower layer (the saline water) is fed slowly under gravity to
the apex region of the conical base via a small filling-tube leading from an external
reservoir. The tube is then removed and the system is allowed to spin up to a state
of rigid body rotation. Spin-up of the fluid/container system is achieved by a slow
acceleration of the turntable towards a fixed final rotation rate; this avoids excessive
interfacial mixing.

Data acquisition

Following a change in the rotation rate of the container, quantitative data are obtained
for the transient response of the system through a combination of particle tracking
techniques and density measurements.

The azimuthal flow field at a specified depth in the flow can be visualized by
the introduction of a sufficient number of neutrally buoyant particles and their
illumination by a horizontal light sheet. However, since the linear analysis presented in
the previous sections suggests that the interior flow evolution should be independent of
the vertical coordinate (in each layer), most data relevant to the upper layer evolution
are obtained from particles distributed over the free surface. The illuminated particle
motion is recorded onto video cassette for later processing with particle tracking
software, as discussed by Dalziel (1992).

A calibrated aspirating conductivity probe is used to measure the density of the
working fluid at a specified location. The probe can be deployed in one of two modes
during an experiment, either attached to a vertical traverse that enables density
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profiles to be obtained over a depth range, or stationary to provide time-series data.
A solid metal electrode is immersed unobtrusively elsewhere in the fluid to complete
the electrical conductivity circuit.

Parameter regimes

Experiments are performed with non-dimensional parameters in the range

|Ro| ∈ [1/7, 1/3] Bu ∈ [0, 6],
rB � 1, h = (h+ + h−) ∈ [1.48, 1.59],
σ = 700, E ≈ 5× 10−5,
a ∈ [0.25, 0.75], h− ∈ [0.3, h],

together with

Ω ∈ [π/5, 7π/30] rad s−1, R = 0.1825 m,
ν = 10−6 m2 s−1, N2 ∈ [3, 30] s−2.

Note that the Froude number based on the radius of the cylinder and maximum
fluid depth is

F = 4Ω2R2/gh∗ < 0.02, (4.1)

for which a maximum steady deviation of the parabolic free surface during rigid body
rotation is considerably smaller than the total depth.

The laboratory configuration is such that rB � 1, and therefore we do not present
any quantitative comparison with predictions of the evolution in Region IIa. The fluid
below the interface is simply referred to as Region II in the subsequent discussion.

The interfacial region

Laboratory results confirm that, for sufficiently small Ro and F , the large-scale
response of the two layers (on a E−1/2Ω−1 time scale) is independent of the density
difference (for ∆ρ ∈ [4, 35] kg m−3). The effect of the density interface is to effectively
isolate the regions of fluid above and below it, leading to largely independent spin-up
responses. We therefore concentrate on making quantitative comparisons of the linear
theory with particle tracking results obtained throughout the flow, and discuss the
evolution of the density interface in somewhat less detail.

The characteristic spin-up times are different in each of the two main layers,
therefore a force imbalance during the transient response will lead to a ‘doming’
of the initially parabolic interface. This displacement of the interface is very small
relative to the depth of the individual fluid layers. Small-scale interfacial displacement
can be measured via a density probe at a fixed location in the interfacial layer. The
unsteady displacement of the isopycnals can be measured via the shift in the density
measured at a fixed point when the probe is centred in the high-N region.

A simple method of presenting the density measurements is to assume that the
density is a linear function of the vertical coordinate near to the mid-plane of the
interface. That is, for a measured density of ρm(t) (relative to an initial value of ρ0),
we can define a dimensionless interfacial shift at the radial location of the probe to be

∆ =

∣∣∣∣ gρm(t)

ρ0N2
maxR

∣∣∣∣ , (4.2)

where Nmax is the peak value of the buoyancy frequency. The quantity ∆ is an ap-
proximate measure of the interfacial shift relative to the natural length scale, which
in this case is taken to be the cylinder radius. Such measurements show a peak inter-
facial displacement of the order of just a few percent of the container radius R. The
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Figure 3. Decay of the local normalized angular frequency at two radial locations in Region II for
experiment 1 (see table 1). The error bars on the data points indicate the standard deviation of the
mean and the solid lines are predictions based on the linear theory. The dotted lines are generated
by linear regression through the data.

linear character of the response can be verified by comparing data at Ro = ±ε for a
sufficiently small value of ε; the same response (to within experimental accuracy) can
be obtained with only a sign change.

Obviously, the interfacial displacement must have some functional dependence on
Ro and Bu as well as the other parameters associated with the container geometry.
However, for sufficiently small Ro the displacement is small and is of little importance
to the linear spin-up mechanisms on the E−1/2Ω−1 time scale for h−, h+ ∼ O(1).
Therefore, we do not investigate the quantitative behaviour of the interfacial region
in detail.

5. Experimental results and comparisons
5.1. Region II: spin-up response below the density interface

The unsteady response of Region II is predicted to be qualitatively independent of
the location of the interface relative to the discontinuity in wall slope. In fact, the
analysis is equally valid for the response of a contained volume of homogeneous fluid.
A set of reference laboratory experiments was performed with a homogeneous fluid
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Figure 4. A comparison between laboratory results (symbols) and the inviscid interior solution
(solid lines) for the azimuthal velocity in Region II for experiment 1. Since the container is of
variable depth, the azimuthal velocity profile is not simply proportional to r during the transient
response.

(no density interface) in the composite geometry. Particle tracking data were obtained
from the free surface.

Figure 3 presents data for the evolution of the local, normalized angular frequency
of the fluid at two radial locations. Since the camera views the motion relative to the
final rotation rate of the container (Ω + ∆Ω s−1), the quantity shown is

ω̄ =
∣∣∣v0 − r

r

∣∣∣ . (5.1)

The figure presents results for r ≈ 0.525 and r ≈ 0.725, with error bars indicating
the standard deviation of the mean. The data for each case are averaged over the
radial intervals of 0.5 6 r 6 0.55 and 0.7 6 r 6 0.75, and the theoretical predictions
are made with r = 0.525 and r = 0.725 respectively.

The linear spin-up analysis predicts (from (2.25) with rB � 1) that

|(v0 − r)/r| = exp(−µt/H−) + O(r2
B), H− = h− − r, (5.2)

and it is this quantity that is represented by the solid lines in figure 3.
A comparison of the predicted azimuthal velocity in Region II is presented in

figure 4, which shows good agreement away from the viscous sidewall layer. The data
of figure 4 are obtained by particle tracking at the free surface (for experiment 1, see
table 1) over a period of 1 s, then azimuthally averaging and computing a segmented
average over the radial coordinate.

As can be seen from figures 3 and 4, the experimental method reproduces the
classical linearized spin-up evolution. Similar results can be obtained for spin-up
in a cylindrical container with a horizontal base, in which case the constant fluid
depth leads to an interior response that is independent of the radial coordinate; see
Greenspan & Howard (1963).

In cases where a density interface exists, the response in Region II remains the same
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Figure 5. Decay of the local normalized angular frequency near r = 0.55 in Region II for experiment
2. The error bars indicate the standard deviation of the mean and the dashed line is a prediction
based on the linear theory.

in the theoretical treatment. Figure 5 shows a comparison between the theory and
experiments for decay of the local normalized angular frequency in Region II during
experiment 2. The data are obtained from neutrally buoyant particles introduced into
the lower layer, which are illuminated from the side via a horizontal light sheet and
viewed from above. Particle tracking is performed over the interval 0.5 6 r 6 0.6, and
a theoretical prediction is given for r = 0.55, as shown by the dashed line.

As may be anticipated, spin-up in Region II is achieved through a mechanism of
secondary meridional circulation. The quantitative response is essentially that outlined
by Greenspan & Howard (1963) since the region is bounded below by an Ekman
layer.

5.2. Region I: spin-up response above the density interface

An interface intersecting the vertical wall of the cylinder

For an interface intersecting the vertical upper wall of the container, the response
in the lower layer is as outlined above. However, since the upper layer is not bounded
by Ekman layers on solid boundaries, there is no dominant induced meridional
circulation and the previous analysis predicts that readjustment occurs via viscous
diffusion.

In figure 6 we present data obtained in experiment 5 for the variation of the
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Figure 6. Decay of the azimuthal velocity in Region Ia for experiment 5. The density interface
intersects the vertical wall and the time scale is t′ = t∗ν/R2 = E1/2t. The solid line is a theoretical
prediction and the data points are obtained from a representative laboratory experiment in the
region r ∈ [0.5, 0.6].

azimuthal velocity near r = 0.55. The time scale is that relevant for viscous diffusion
t′ = t∗ν/R2 = E1/2t, and the density interface in this case is above the discontinuity
in slope of the container.

The data cover a dimensional time scale of nearly two hours in this experiment and
the solid line is the theoretical prediction based on summing the first ten terms in the
series (2.18). As can be seen from the figure, the qualitative assumption of the linear
analysis is verified, that is, Region Ia readjusts over a much longer time scale than
a region bounded by an Ekman layer. Nevertheless there is a significant deviation
between the predicted response and the laboratory data.

The discrepancy illustrated by figure 6 is typical of data obtained in a number of
experiments and is attributable to the presence of some slight meridional circulation
or nonlinear effect in the upper layer that remains sufficient to dominate the weak
diffusive spin-up mechanism. Following the comments of a referee, we note that since
there is no dominant Ekman recirculation in this region, the otherwise small free-
surface/interface deflection may induce some recirculatory motion that will lead to a
quantitative difference from the predictions of the theory. However, the readjustment
time scale for this region is seen to be much slower (though not necessarily E1/2

slower) than the other regions, which is the crucial assumption in the theoretical
model for predictions over the E−1/2Ω−1 time scale in the adjacent regions.
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An interface intersecting the sloping wall of the cone

When the density interface intersects the sloping base of the container, there exists
a sub-region of I (denoted by Ib) that is an annular region of fluid bounded by a
free-standing shear layer, a Stewartson layer at the wall, a free surface and an Ekman
layer.

The analysis of the previous sections predicts that the response within this region
is of the form

v0 − r = −r exp(−µt/H+) +
a2

r
Ṽ0(r, t), (5.3)

where H+ = h+ − (r − a), µ = (cos α)−1/2 and Ṽ0 is given by (2.46).
There are some experimental difficulties in making quantitative observations of

Region Ib over a significant time scale. A typical Ekman number for the laboratory
experiments is E ≈ 5 × 10−5, and the viscous layers bounding Region Ib are of
dimensionless width E1/4. Therefore, to separate the viscous layers at r = a and r = 1,
one must make a small. However, for a� 1 the partially spun-up state predicted by
the theory will be very weak and difficult to observe in the laboratory.

Although the general transient behaviour is complicated to evaluate, there are
simple expressions available for the small- and large-time behaviours that can be
used for making quantitative comparisons. When the radius of the density interface is
small in comparison to the radius of the cylinder, that is a� 1, we expect the initial
response of the fluid in Region Ib to be

|v0 − r| = r exp(−µt/H+) + O(a2). (5.4)

However, for sufficiently large t, terms of O(a2) are significant in the expression
for the azimuthal velocity. Therefore, we expect that an algebraic approach to a
partially spun-up state should eventually be observable. In this state the flow should
approximate

|v0 − r| = a2

r

(√
µ

h+

E1/4

a
−
√
h+

πµt

)
+ EST. (5.5)

Particle tracking experiments have been performed within Region Ib, the results of
which are shown in figures 7(a) and 7(b) for two different values of a. The figure shows
the decay in measured azimuthal velocity over the non-dimensional homogeneous
spin-up time scale t = E1/2Ωt∗. Each part presents an experimental time series formed
from a running average of particle tracking data at a fixed radial location, together
with the two theoretical predictions (5.4) and (5.5). As can be observed from the figure,
there is good quantitative agreement concerning the deviation from an exponential
decay towards a partially spun-up state on this time scale.

In figure 8 we show a comparison of experimentally determined profiles of angular
frequency with the theoretically predicted values for Region Ib. Away from the shear
layer straddling r = a and the viscous layer at the cylindrical wall (r = 1) there
is good agreement between the theory and laboratory data. We note that particle
tracking data are unreliable when close to the axis of rotation due to the poor pixel
resolution of the small-radius paths.

5.3. The qualitative behaviour for Ro = O(1)

Experiments have been conducted in which the change in rotation is sufficiently large
(relative to the background rotation) to introduce nonlinear effects. Typically, there is
a limiting value of the Rossby number beyond which a distinct change in the evolution
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Figure 7. (a) Decay of the azimuthal velocity in region Ib for experiment 4. The theoretically
predicted partially spun-up state (for large time) and initial response are shown as dashed lines.
The data were obtained at a mean radial location of r = 0.65. (b) As (a) but for experiment 3 with
data obtained at r = 0.75.

is obtained. For Rossby numbers below the limiting value the qualitative response
remains as described previously, but with an increasing quantitative discrepancy
between theory and experiment. (No comparisons have been made with improved
estimates of Ekman transport at larger values of Ro.) A complete experimental
investigation of the Ro = O(1) regime is beyond the scope of this paper; however we
shall mention some generic features associated with such flows.

As the Rossby number is increased, density information gathered within the in-
terface suggests that an oscillation of the interfacial displacement can be observed.
These oscillations are more pronounced away from the axis of rotation and can be
found for both positive and negative Rossby numbers.

In cases of nonlinear spin-down with the density interface intersecting the sloping
wall, the transient response typically leads to a non-axisymmetric flow in the region
near to the interface. On reducing the angular frequency of the container, the Ekman
layer on the sloping wall in the upper layer leads to a downwards mass transport
that impinges upon the interface. This leads to a roll-up of the fluid, which becomes
unstable and undergoes a rapid breakdown, breaking the axisymmetry. The vertically
displaced (denser) fluid then mixes rapidly and the flow can subsequently evolve
through states with an azimuthal periodicity, although the final state is obviously
fixed to be a rigid body rotation.

In figure 9, a sequence of frames obtained during nonlinear spin-down is shown
(experiment 6). In this case the lower layer is dyed with fluoroscene and a horizontal
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Figure 8. A comparison of profiles of local angular frequency |(v0 − r)/r| for experiment 4 in
Region I. The location of the shear layer separating Regions Ia and Ib is shown by the vertical line
at r = a. Theoretical predictions of the angular frequency distribution in Region Ib (a 6 r 6 1) are
shown (solid lines), together with experimentally determined values (symbols). The two profiles are
obtained at non-dimensional times t = 0.3, 2.8 (t = EΩt∗), and the theoretical predictions are made
using the short- and large-time descriptions respectively, equations (5.4) and (5.5).

light sheet is positioned approximately 1 cm above the top of the dyed fluid (whilst the
system is at rest and the dye interface is horizontal). The system is allowed to slowly
spin up to an angular frequency of π/5 rad s−1 then the rotation rate is decreased
to 4π/30 rad s−1 over a period of approximately 6 s. Dyed fluid from the more dense
lower layer, when brought into the light sheet, results in a bright region in the flow
visualization images.

The sequence of images shows the initial state (with some fluorescence from residual
dye levels), followed by a number of bright concentric rings as dyed fluid is forced into
the light sheet by the Ekman transport (directed towards the apex) impinging on the
density interface. At t∗ ≈ 30 s, the structures formed from the more dense dyed fluid
undergo a rapid breakdown, breaking the axisymmetry. The flow then evolves with
an azimuthal periodicity until diffusing into the new state of a rigid body rotation.

6. Conclusions
This paper has discussed the linear spin-up of a two-layer density-stratified, rotating

fluid in a variable-depth container. The container considered in the theoretical work
consists of a finite-depth circular cylinder with a base formed from a cone cut
horizontally near to the apex.

It has been shown that the readjustment mechanism in the lower layer remains
qualitatively the same for any given relative position of the density interface and
discontinuity in wall slope. However, careful consideration of the bounding viscous
layers has also revealed an unusual (in comparison with classical spin-up problems)
algebraic response in a sub-region of the upper layer when the density interface is
below the cone/cylinder join.

A sequence of experiments has shown that, for sufficiently small changes in the
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t*= 0 s t*=12 s

t*= 30 s t*= 80 s

t*=120 s t*=200 s

Figure 9. A sequence of video frames for experiment 6, showing the development of a
non-axisymmetric flow near the density interface. The lower layer is dyed with fluoroscene and
up-welling fluid from this layer intersects a horizontal light sheet to produce bright regions in the
flow.
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angular frequency of the container, laboratory data are in good quantitative agreement
with the theoretical predictions with regard to the readjustment mechanisms. The
predicted diffusive response in the upper layer when the density interface is above
the cone/cylinder join has not been confirmed quantitatively; however this difference
arises over a time scale much longer than E−1/2Ω−1. It is apparent that some slight
recirculatory mechanism is active in this layer which can affect the experimental data
over the longer time scale due to the absence of a dominant Ekman flow. Such a
mechanism may arise from a transient doming of the interface/free surface, but is
insufficient to affect comparisons in adjacent regions over the E−1/2Ω−1 time scale.

A preliminary sequence of experiments has been performed for increasing val-
ues of the Rossby number to assess the first observed qualitative changes due to
nonlinear effects. In this manner wave motion and non-axisymmetric flows in the
near-interfacial region have been observed in the laboratory experiments. This un-
steady non-axisymmetric flow regime has only been noted during nonlinear spin-down
evolutions with the density interface intersecting the sloping base of the container. It
is connected to an instability of the shear layer straddling r = a; however the vertical
extent of the non-axisymmetric flow and its effect on the global spin-up time are
subjects for future work.

The support of the EPSRC is gratefully acknowledged.

Appendix
It has been shown that the portion of Region II within r = rB spins up in the

familiar way, with solution (2.23); furthermore, we found that in the portion of the
fluid over the sloping bottom and under the interface, Region IIb, a physically similar
spin-up occurs except that there is an unknown function K(t) in equation (2.28). We
utilize ideas due to Stewartson (1966) and Moore & Saffman (1969b) to deduce the
form of the function.K is to be determined in the following way: From equation (2.28),
we see that if v were to be continuous at r = rB , then there would be a net source of
fluid at that location since the volumetric flow rates in the boundary layers are not
identical due to the slope. That in itself is permissible since there can be a Stewartson
1/3-layer straddling the r = rB location, and such a layer can transport fluid that
then passes out through the (thicker) 1/4-layers and back into the interior geostrophic
flow. However, we know from Moore & Saffman (1969b) that such a motion must be
consistent with the possible solutions of the 1/3-layer. We now turn to the details of
that analysis.

A.1. Shear layer structure for the case zc < 0

In a variety of places (see for example, Moore & Saffman 1969b; Foster 1972), it
is shown how to obtain the outer Stewartson layer (1/4-layer) equations, which are
unsteady on the time scale considered here. We refer the reader to those sources, and
simply note those equations here; they are

∂v0a

∂t
− ∂V

∂t
+
∂2V

∂ξ2
=

1

h−
(V − v0a), for ξ < 0,

∂v0b

∂t
− ∂V

∂t
+
∂2V

∂ξ2
=

1

h−(cos α)1/2
(V − v0b), for ξ > 0,

 (A 1)
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ξ =
(r − rB)

E1/4
,

L{V } =L{v0a}+ Aepξ, ξ < 0,

L{V } =L{v0b}+ Be−qξ, ξ > 0,

 (A 2)

p ≡ (1/h− + s
)1/2

, q ≡ (([cos α]1/2h−)−1 + s)1/2. (A 3)

Here the 0a and 0b subscripts refer to geostrophic velocities in Regions IIa and IIb
evaluated at r = rB . It is simplest to work, for the time being, with the Laplace
transform of the 1/4-layer solutions.

In order to match the solutions to the interior 1/3-layer we introduce the 1/3-layer
variable, η = (r − rB)/E1/3. Expanding solutions (A 2) for small ξ, then utilizing this
1/3-layer scaling gives

L{v} ∼ (L{v0a}+ A) + E1/12Apη + 1
2
E1/6Ap2η2 + . . . for η → −∞, (A 4)

L{v} ∼ (L{v0b}+ B)− E1/12Bqη + 1
2
E1/6Bq2η2 + . . . for η →∞, (A 5)

which are matching conditions for 1/3-layer solutions. The 1/3-layers, which are
steady on this time scale, are described by equations obtained from conventional
boundary-layer arguments applied to (2.9)–(2.11), and are

∂3v

∂η3
+ 2

∂w

∂z
= 0, (A 6)

∂3w

∂η3
− 2

∂v

∂z
= 0, (A 7)

∂u

∂η
+
∂w

∂z
= 0. (A 8)

We construct an asymptotic expansion for the solution of these equations in the form

v ∼ v̄0 + E1/12v̄1 + E1/6v̄2 + . . . . (A 9)

Analysis of the solutions indicate (Moore & Saffman 1969b) that the first two terms
must be regular, and noting the form of (A 4)–(A 5) leads to solutions v0 = f0(t) and
v1 = f1(t)η. Matching to both 1/4-layers yields

L{v̄0} = F0(s) =L{v0a}+ A =L{v0b}+ B, (A 10)

L{v̄1} = F1(s)⇒ pA = −qB. (A 11)

Solving,

A =
q

p+ q
[L{v0}], B = − p

p+ q
[L{v0}], where [Ψ ] ≡ Ψb −Ψa, (A 12)

so that A and B are now known in terms of the transforms of the geostrophic
velocities evaluated at r = rB±.

The third term in the (A 9) series satisfies equations (A 6)–(A 8), as do all terms.
Integrating (A 6), written for (v̄2, w̄2), over z from z = −h− to 0 gives

∂3

∂η3

∫ 0

−h
v̄2 dz = 2w̄2|−h− . (A 13)

Analysis of the solutions to (A 6)–(A 8) (see Moore & Saffman 1969a) indicates that
a source-like singularity at η = 0 and z = −h− is possible. Referring to figure 10,
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Figure 10. Source/sink behaviour in the Ekman layer at the discontinuity of wall slope.

fluid flows from the left, under the 1/4-layer, and fluid flows out to the right, under
the right-hand 1/4-layer. There is a mismatch of this flux, and so equations (2.29)
indicate that the Laplace transform of the net inflow of fluid into the base of the
1/3-layer is

Fnet = − 1
2
E1/2F̂net, (A 14)

F̂net =

{(
L{v0a} − vB(rB)

s

)
− L{v0b} − vB(rB)/s

(cos α)1/2

}
. (A 15)

Since a source/sink-like singularity in (v̄2, w̄2) is possible, as already noted, this
net in/out-flow of fluid must be contained by the 1/3-layer, as shown in figure 10.
Therefore, on integrating (A 13) across the width of the 1/3-layer, we have a condition
on the jump in the second derivative of v̄2, namely

∂2

∂η2

∫ 0

−h−
[L{v̄2}]dz = 2

∫ ∞
−∞
w̄2|h−dη = −F̂net. (A 16)

The integral on the left-hand-side is evaluated by the matching requirements given
by the third term in the series (A 4), (A 5). Replacing A and B in that expression
leads to the essential connection between the geostrophic velocities on either side of
the shear layers and the Ekman inflow into the one-third layer,

−pqh−[L{v0}] = −F̂net. (A 17)

Substituting values for p and q and simplifying using v0a as determined from (2.23)
gives the Laplace transform of v0b at r = rB to be

L{v0b} =
vB(rB)

s
− 1

p2

1 + pqh−
(cos α)−1/2 + pqh−

vB(rB). (A 18)

This result appears as equation (2.31) in the text.

A.2. Shear layer structure for the case zc > 0

In this case, the above analysis is applicable to the layers in z < 0, so Region II spins
up exactly as in the zc < 0 case. However, in z > 0 there is a set of shear layers
situated at r = a, where the interface contacts the sloping wall. Just to the right of the
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1/3-layer at r = a, the 1/4-layer is exactly as in Region II for r = rB+; the governing
equation is (A 2), but with h− replaced by h+. On the other hand, on r = a− there is
no Ekman layer either at z = 0 or at z = h+, so, referring to figure 10, there is no
Ekman layer to the left of ξ = 0, so there is no inflow to the 1/3-layer from there.
Since there is no Ekman layer under the left-hand layer, it is not the usual 1/4-layer,
that owes its structure to the existence of an underlying Ekman layer. In fact, the
layer is simply diffusive. The shear layer equation is

∂v0a

∂t
− ∂V

∂t
+
∂2V

∂ξ2
= 0 for ξ < 0. (A 19)

One can proceed as above, then, but apparently, on transforming (A 19), the quantity
p is now given by s1/2 and q by (s+µ/h+)1/2. To distinguish from the previous section,
let these values be denoted by p′ and q′. Since there is no interior spin-up in Region
Ia on this time scale, and to leading order in E, v0a = 0 and (A 10)–(A 11) leads to

L{v0b} =
vB(a)

s

1

1 + p′q′h+(cos α)1/2
. (A 20)

However, the situation is in fact more subtle than indicated here. Unlike the other
sub-regions discussed, this diffusive layer on r = a− grows in width like

√
νt∗ in

dimensional terms, or with a width E1/4t1/2 with the variables in use here. A more
complete way of proceeding is to write down the solution to equation (2.24) inside
Region Ia. The transform of that solution is

L{v0} =KI1

(√
sr

E1/4

)
, (A 21)

where the constant K is not known, since its value comes out of the interaction at
the layer. However, comparing this solution with the asymptotic expansion (A 4), we
find after some algebra that

p′ =
E1/4

a

ψ(z2 + 2)− 1

1− ψ , ψ ≡ 1

z

I1(z)

I0(z)
= 2

∞∑
n=1

1

z2 + j2
0n

, where z ≡
√
sa

E1/4
. (A 22)

In this expression, j0n is the nth zero of J0. So, now L{v0a} is no longer zero, and a
modification to (A 20) arises, so that we have

L{v0b} =
vB(a)

s

1− Q
1 + p′q′h+(cos α)1/2 − Q, (A 23)

L{v0a} = −vB(a)

s

Q

1 + p′q′h+(cos α)1/2 − Q, (A 24)

with

Q ≡ q′

p′ + q′
1− (z2 + 1)ψ2 − ψ

(1− ψ)2
. (A 25)

So, (A 23) must in general replace (A 20). The Laplace inversion for v0b and v0a is
indeed very complicated. Some general things may be noted, however. First, since
the function ψ is holomorphic, then so is the function p′. Possible poles of Q are
accompanied by a branch point coming from q′. It appears that the appearance of
an origin branch point in p′, incurred in writing p′ =

√
s as above, is somehow an

approximation to the actual inversion on a shorter time scale.
We now explore the nature of the Laplace inversion of these quantities.
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A.2.1. Long times

To examine the nature of the long-time features of the spin-up, we look at the
neighbourhood of the origin of the s-plane. Recall that neither p′ or Q has a branch
point at the origin! From examining the details, we find that

ψ ∼ 1

2

(
1− z2

8
+
z4

48
+ . . .

)
for z → 0 =⇒ (A 26)

p′ ∼ 3

4

sa

E1/4
+ O(s2), (A 27)

Q ∼ 1− 3
4
z2

(
1 +

E1/4

aq′

)
+ O(z4). (A 28)

Using these results, it is trivial to obtain the residue of the origin poles for L{v0b}
and L{v0b}; the former has a simple pole, the second a second-order pole at s = 0.
Thus,

Res(L{v0b}; 0) = a

(
1− E1/4

a

√
µ

h+

)
, (A 29)

Res(L{v0a}; 0) =
4

3a
E1/2t+ O(E3/4t). (A 30)

So, it is interesting to note that even on the ‘long’ time scales analysed here, the
interior of the fluid, in Region I, is only barely beginning to spin.

A.2.2. Short times

On the time scale primarily analysed in this paper, and the one relevant to the
experimental measurements, t = O(1), so the Laplace variable is also O(1). That
means that the quantities p′ and Q may be approximated for z large. Doing that, we
find that

ψ ∼ 1

z
− 1

2z2
− 1

8z3
+ . . . for z →∞ =⇒ (A 31)

p′ ∼ √s− 1

2

E1/4

a
+ O

(
E1/2

s

)
, (A 32)

Q ∼ −1

2

q′

q′ + p′
1

z2
+ O

(
1

z3

)
, (A 33)

so that the result given above for p′ actually represents the first term in a series. The
details of the Laplace inversion are given more particularly in § 2.3, but note here
that in this range L{v0b} still has a simple pole at the origin, and L{v0b} on these
shorter times still has a second-order pole. Hence,

Res(L{v0b}; 0) = a, (A 34)

Res(L{v0a}; 0) = 1
2
E1/2t+ O(E3/4t). (A 35)
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